Bayes factor asymptotics for variable selection in the Gaussian process framework

نویسندگان

چکیده

We investigate Bayesian variable selection in models driven by Gaussian processes, which allows us to treat linear, nonlinear and nonparametric models, conjunction with even dependent setups, the same vein. consider Bayes factor route selection, develop a general asymptotic theory for process framework “large p, large n” settings $$p\gg n$$ , establishing almost sure exponential convergence of under appropriately mild conditions. The fixed p setup is included as special case. To illustrate, we apply our result linear regression, model squared covariance function accommodating covariates, first-order autoregressive time-varying covariates. also follow up theoretical investigations ample simulation experiments above regression contexts real, riboflavin data consisting 71 observations 4088 For implementation using factors, novel effective general-purpose transdimensional, transformation-based Markov chain Monte Carlo algorithm, has played crucial role simulated real applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Variable Selection for Gaussian Process Models in Computer Experiments

In many situations, simulation of complex phenomena requires a large number of inputs and is computationally expensive. Identifying the inputs which most impact the system so that these factors can be further investigated can be a critical step in the scientific endeavor. In computer experiments, it is common to use a Gaussian spatial process to model the output of the simulator. In this articl...

متن کامل

the test for adverse selection in life insurance market: the case of mellat insurance company

انتخاب نامساعد یکی از مشکلات اساسی در صنعت بیمه است. که ابتدا در سال 1960، توسط روتشیلد واستیگلیتز مورد بحث ومطالعه قرار گرفت ازآن موقع تاکنون بسیاری از پژوهشگران مدل های مختلفی را برای تجزیه و تحلیل تقاضا برای صنعت بیمه عمر که تماما ناشی از عدم قطعیت در این صنعت میباشد انجام داده اند .وهدف از آن پیدا کردن شرایطی است که تحت آن شرایط انتخاب یا کنار گذاشتن یک بیمه گزار به نفع و یا زیان شرکت بیمه ...

15 صفحه اول

Empirical Bayes vs. Fully Bayes Variable Selection

For the problem of variable selection for the normal linear model, fixed penalty selection criteria such as AIC, Cp, BIC and RIC correspond to the posterior modes of a hierarchical Bayes model for various fixed hyperparameter settings. Adaptive selection criteria obtained by empirical Bayes estimation of the hyperparameters have been shown by George and Foster [2000. Calibration and Empirical B...

متن کامل

Limiting Properties of Empirical Bayes Estimators in a Two-Factor Experiment under Inverse Gaussian Model

The empirical Bayes estimators of treatment effects in a factorial experiment were derived and their asymptotic properties were explored. It was shown that they were asymptotically optimal and the estimator of the scale parameter had a limiting gamma distribution while the estimators of the factor effects had a limiting multivariate normal distribution. A Bootstrap analysis was performed to ill...

متن کامل

Learning Gaussian Process Kernels via Hierarchical Bayes

We present a novel method for learning with Gaussian process regression in a hierarchical Bayesian framework. In a first step, kernel matrices on a fixed set of input points are learned from data using a simple and efficient EM algorithm. This step is nonparametric, in that it does not require a parametric form of covariance function. In a second step, kernel functions are fitted to approximate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of the Institute of Statistical Mathematics

سال: 2021

ISSN: ['1572-9052', '0020-3157']

DOI: https://doi.org/10.1007/s10463-021-00810-6